Free testosterone and risk for Alzheimer disease in older men

S.D. Moffat, PhD; A.B. Zonderman, PhD; E.J. Metter, MD; C. Kawas, MD; M.R. Blackman, MD; S.M. Harman, MD, PhD; and S.M. Resnick, PhD

Abstract—Objective: To investigate the relationships between age-associated decreases in endogenous serum total testosterone (T) and a free T index (FTI) in men and the subsequent development of Alzheimer disease (AD). Method: The authors used a prospective, longitudinal design with follow-up in men since 1958. Participants were from the Baltimore Longitudinal Study of Aging, a community-dwelling volunteer sample with baseline ages of 32 to 87 years. All subjects were free of AD at baseline T assessment. Five hundred seventy-four men assessed at multiple time points were followed for a mean of 19.1 years (range, 4 to 37 years). Diagnoses of AD were based on biennial physical, neurologic, and neuropsychological evaluations. Results: Diagnosis of AD was associated inversely with FTI by itself and after adjustments for age, education, smoking status, body mass index, diabetes, any cancer diagnoses, and hormone supplements. In separate analyses, total T and sex hormone binding globulin were not significant predictors after adjustment with covariates. Increases in the FTI were associated with decreased risk of AD (hazard ratio = 0.74; 95% CI = 0.57 to 0.96), a 25% decrease for each 10-nmol/mL FTI increase. Conclusions: Calculated free testosterone concentrations were lower in men who developed Alzheimer disease, and this difference occurred before diagnosis. Future research may determine whether higher endogenous free testosterone levels offer protection against a diagnosis of Alzheimer disease in older men.

Neurology 2004;62:188-193

A sizable literature now exists relating age-related alterations in the endocrine environment to cognitive changes and the onset of Alzheimer disease (AD) in women. The comparative dearth of similar research in men may be attributable primarily to the fact that testosterone replacement therapy (TRT) has been used much less frequently in men than hormone therapy in women. Moreover, TRT has not been administered for long periods that are sufficient to establish linkages to AD. Nevertheless, androgen levels in men decrease substantially with age, raising the question of whether this decrease may contribute to the development of AD. Although numerous studies have demonstrated contributions of testosterone (T) to selected cognitive functions in young and old men, to date there have been no studies assessing prospectively the risk for AD associated with the so-called "andropause." Decreased total T levels have been reported in men with AD compared with age-matched control subjects. However, these data are ambiguous because the depleted T levels may be a consequence rather than a cause of the disease. To assess the impact of T decline in the subsequent manifestation of AD, it is essential to obtain measures of T that precede the development of the disease.

In the present study, we followed 574 men whose ages at baseline T assessment ranged from 32 to 87 years for a mean duration of 19.1 years. We collected multiple serum samples for determination of total T, sex hormone binding globulin (SHBG), and the calculated free T index (FTI) and evaluated presence or absence of a diagnosis of AD as the principal outcome variable. We report here the first prospective longitudinal study assessing the impact of long-term total and estimated free T levels on the development of AD.

Methods. Subjects. Subjects were men who volunteered to participate in the Baltimore Longitudinal Study of Aging (BLSA), a study performed by the National Institute on Aging (NIA). Participants were community-dwelling and returned every 2 years to the Gerontology Research Center of the NIA for comprehensive medical and neuropsychological evaluations. Androgen data were available for a large number of BLSA men whose blood samples were assayed as part of a study of prostate health and disease.

See also pages 170 and 301

From the Laboratory of Personality and Cognition (Drs. Moffatt, Zonderman, and Resnick) and Laboratory of Clinical Investigation (Dr. Metter), National Institute on Aging, Intramural Research Program, Baltimore, MD; Institute of Gerontology and Department of Psychology (Dr. Moffatt), Wayne State University, Detroit, MI; Department of Neurology (Dr. Kawas), University of California, Irvine, CA; Laboratory of Clinical Investigation (Dr. Blackman), National Center for Complementary and Alternative Medicine, National Institutes of Health, Bethesda, MD, and Kraus Longevity Research Institute (Dr. Harman), Phoenix, AZ.

Supported in part by NIH NIA grants to Dr. Claudia Kawas AG00225 Risk Factors and Early Signs of AD, AG03146 AD Research Center, and MO1 RR00719 General Clinical Research Center at Johns Hopkins Bayview Medical Center.

Received May 13, 2003. Accepted in final form November 24, 2003.

Address correspondence and reprint requests to Dr. Susan M. Resnick, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, MD 21224; e-mail: resnick@ncahc.nih.gov

188 Copyright © 2004 by AAN Enterprises, Inc.